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The exact solutions of the hard-disk collisions obeying Sllod dynamics (so named because of its close
relationship to the Dolls tensor algorithm) with isoenergetic and isokinetic constraints have been
presented and discussed. In equilibrium the trajectories in the isokinetic and isoenergetic systems are in-
distinguishable, but the pressures are not equal. Outside equilibrium, with a shear present, the isoener-
getic constraint is shown to be inappropriate for the Lorentz model. The solution of the isokinetic
hard-disk collision has been used to evaluate and qualitatively explain the dependence of the potential
part of the pressure tensor on shear rate. The hard-disk results have been compared to the results for

soft disks.

PACS number(s): 05.20.Dd

I. INTRODUCTION

The two-dimensional Lorentz model is the simplest
possible model of shear flow. It consists of two particles
in a periodic cell with the Lees-Edwards moving periodic
boundary conditions [1], obeying the Sllod [2] equations
of motion. The reference frame of the system is fixed on
one of the particles, the scatterer of radius o, while the
motion of the moving point particle of the reduced mass
m /2 and momentum p is described by the equations of
motion,

x=2p.,/m+vyy, px=Fx—7/py——apx , W
y=2p,/m , p,=F,—ap, .
The force F is the conservative force of interaction be-
tween the disks, and y is the applied shear rate. The
Sllod algorithm (so named because of its close relation-
ship to the Dolls tensor algorithm) correctly incorporates
the coupling to the external shearing field, which results
in streaming velocity of a constant gradient being super-
imposed on the peculiar velocities of the particles, and
thus prevents the attainment of an equilibrium state. The
external field continuously performs work on the system.
If a nonequilibrium steady state is to be achieved, a con-
straint (“friction”) coefficient a has to be introduced.
This factor can be defined in such a way that the heat
generated by the external field is removed or added, keep-
ing the peculiar kinetic energy p2/m conserved (“iso-
kinetic constraint”). The other definition of a can be
such that the excess energy created by the external field is
compensated, and the total peculiar energy
E=p%/m+U(r) is conserved at all times (“isoenergetic
constraint), where U(r) is the potential energy generat-
ing the conservative repulsive force of interaction F.
In the former case, the isokinetic constraint or the
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“Gaussian thermostat” is given by a=ay,

ax=(F-p—vp,p,)/p*, 2)

ensuring that the magnitude of the momentum is con-
served at all times. In the latter isoenergetic case a=ag,

where
/p 2, (3)

In the regions of space where there is no interaction be-
tween the point particle and the scatterer, i.e., where
F=0, the isokinetic and isoenergetic constraint
coefficients ay and aj coincide because both the conser-
vation of kinetic and total energy mean that the magni-
tude of the momentum p remains unchanged. The sys-
tem (1) and (2) or (1) and (3) then can be solved in terms
of three variables, the position coordinates of the moving
particle (x,y) and the angle 0 between the momentum p
and the x axis. Between the collisions the equations of
motion for these variables are

Fx
A=Y 2 +pxpy

2r

x:‘z,f‘cos0+ry, J”=‘Af8in9, O=ysin’0, (4

which can be solved analytically [3].

The Lorentz model has served to study the most ele-
mentary features of nonequilibrium steady states of shear
flow. It is simple enough for many of its properties to be
understood theoretically, while it still exhibits the charac-
teristics of real nonequilibrium sheared fluids like shear
thinning, shear dilatancy, and normal stress difference.

The microscopic expression for the components of the
pressure tensor of the Lorentz gas is given as a time aver-
age,
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P,p= V<2—m +r Fﬁ>
Y Pal )pﬁ
= lim — =P s+ s)Fg(s)ds | ,
Jim i |12 [yretogtsrds

where a,f=x,y . (5)

The first term on the right-hand side (rhs) of (5) is the
kinetic part of the pressure tensor, which gives the con-
tribution of the motion of the point particle to the
momentum flux. The second term is the potential part of
the pressure tensor, which describes the momentum
transfer due to the interaction with the scatterer during
collisions.

For hard disks the contribution to the kinetic part
comes only from the motion of the moving (point) parti-
cle between the collisions, and it depends only on the dis-
tribution of the average direction of momentum between
the collisions. The analytic solution of the Sllod equations
between the collisions was used to obtain the steady-state
distribution of the polar angle of the momentum from the
relaxation time approximation of the Boltzmann equa-
tion, using the assumption that the velocity distribution
function f depends only on the angle 8 of the momentum
and is uniform in all the other variables. The derivation
uses only the last equation of (4) and does not depend on
the type of applied constraint. The steady-state solution
of the Boltzmann equation [3,4] can predict the depen-
dence of the kinetic part of the elements of the pressure
tensor on shear rate with a quite good correspondence to
the simulation results, implying that the only parameter
responsible for the behavior of the kinetic part of the
pressure tensor is ¥ Tg, where 7 is the density (and shear
rate) dependent ‘‘relaxation time.” The consequence of
this solution is that the kinetic part of the pressure tensor
does not depend on density and shear rate as separate pa-
rameters. It has been therefore assumed that the steady
state of the hard-disk Lorentz gas can be characterized
by only one parameter, Y7y, and that it is sufficient to
find the dependence of the steady state on shear rate for
one density to characterize all possible steady states.

The discrepancies between the predictions of the solu-
tion of the Boltzmann equation and the simulation results
for the kinetic part of the pressure tensor of the thermo-
stated Lorentz gas arise from the fact that the velocity
distribution function f depends also on position (x,y) and
explicitly on time. The importance of the periodic time
dependence, introduced by the Lees-Edwards boundary
conditions, for the characterization of steady state has
first been emphasized by Hoover et al. [10], and is dis-
cussed in Ref. [5].

The potential contributions to the hard-disk Lorentz
gas pressure tensor are the impulses received by the mov-
ing particle in the time intervals of vanishing duration. If
n collisions of infinitesimal duration € occur at times ¢;
(i=1,...,n) during the total elapsed time ¢, the poten-
tial part of the hard disk Lorentz gas is

> lim f

_IEH

In the limit when F— o, e—0 (hard-disk limit) the in-

Ppotential —

“roi($)F gi(s)ds . 6)
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tegrals in (6) for the ith collision become

lim ft

F—

rxi(s )F,;(s)ds =0 A;cos’p; ,

e—0

t;te
Fh_r}rio . 74i(8)F,;(s)ds =0 A;cosg;sing; , (7
e—0
Fll_{x:oft r,-(s)Fy,-(s)s=oA,~sin2q7,- ,

£—0

where g@; is the polar angle of the position of the moving
particle at the ith collision (Fig. 1) and 4; is the collision
impulse

= lim Fe . (8)

F— o
e—0

The collisions of hard disks in sheared hard-disk
Lorentz gas were conventionally simulated using some
stiff repulsive interaction potential, like a stiff Hooke’s
law. Recently an analytic solution for the instantaneous
change of 6 in the thermostated hard-disk collision under
shear has been presented [5]. The solution has been ob-
tained using a generalization of a method outlined in [6]
for the Evans-Gillan model of heat flow. In this paper
the solution from [5] is reviewed, and its implications for
the potential part of the pressure tensor are discussed for
both the equilibrium and nonequilibrium cases. The
same method applied to a sheared isoenergetic collision
shows that the isoenergetic constraint cannot be used in
the hard-disk approximation.

II. EQUILIBRIUM CASE
A. Collisions

In equilibrium, i.e., when y =0, the isoenergetic con-
straint vanishes and the equations of motion of the point
particle with the total energy conserved are

px=Fx/r,
=Fy/r,

x=2p,/m,
) . 9)
y=2p,/m , p,

FIG. 1. Definition of angles characterizing a hard-disk col-
lision. The angle 6; is the angle between momentum and the x
axis just before the collision, 8 ;- is the angle between momentum
and the x axis just after the collision, and ¢ is the polar angle of
the position of the point of collision.
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while the thermostated “isokinetic” equations of motion
that conserve the kinetic energy are

x=2p./m , p.=Fx/r—F-pp./p?, 10
y=2p,/m , p,=Fy/r—F-pp, /p*.

In order to find the behavior of the point particle dur-
ing a hard-disk collision we shall follow the method out-
lined in [6] and [5]. In this method the constant radial
repulsive force is allowed to increase to infinity, causing
the time of collision € (while the point particle is inside
the scatterer) to tend to zero, keeping the product Fe
finite. The length of the infinitely short time interval € is
determined by the condition that the scatterer be circu-
lar, i.e, that the distance to the origin at the beginning
and at the end of collision has to be equal to o.

Because the direction of the force F is radial, the equa-
tions of motion for the rate of change of the momentum
are first written in terms of the radial and tangential com-
ponents, and in the hard-disk limit (F— oo ) all the terms
not containing F are neglected. Therefore in the hard-
disk limit the momentum equations become

Isoenergetic: p,=F, p,=0, 1y
2
Isokinetic: p,=F |1— —pLZ , D= %p,p, . (12)
p p

The solutions for the radial and tangential components
are [5]

Isoenergetic: p,(t)=p,+F(t—¢,;), p,(t)=p, ,
(13)
Isokinetic: p,(t)=p tanh(Ft/p), p,(t)=p /cosh(Ft/p),
(14)

where p,; and p,; are the initial radial and tangential com-
ponents at the “beginning of collision” and €, is the time
of the beginning of collision.

The final momentum at the “end of collision” is deter-
mined from the condition that the radial distances trav-
eled before and after the turning point be equal,

€ € 2p r
Ar= F(t)dt = —dt=0, 15
r=J, Hodr=[ "~ (15)
where €, is the time of the end of collision such that
e=g,—¢,. This gives for both types of collisions the total
change of radial and tangential components of momen-
tum

Aprzprf—pri=—2pri ’ Apt=o > (16)

where p,, and p,, are the final radial and tangential com-
ponents at the end of collision.

It can be observed that for the thermostated disks,
when the force F between the disks is finite and the point
particle collides with the scatterer totally radially
(p,;=p), the complete equation of motion for the radial
component shows that the rate of change of momentum
is identically zero,

4311
2 2 2
py=F1-E [+ 22 _2PPr (17
D, mr mr

The point particle goes right through the scatterer
without any change in momentum. The physical reason
for such behavior is that in the thermostated system with
the isokinetic constraint (2) the momentum of the point
particle is allowed to change its direction but not its mag-
nitude. Therefore during a collision the momentum ro-
tates in the sense determined by this initial tangential
component. When there is no tangential component, it
“cannot decide” in which sense to rotate and the initially
radial momentum remains unchanged during a thermo-
stated collision.

When the force in (17) tends to infinity, the rhs of (17)
becomes undetermined and the final momentum has to be
found as a limiting case of “nearly radial” trajectories,
i.e., again as p,, = —p,; =p, as predicted by (16).

B. Potential part of the pressure tensor

A hard-disk collision can be characterized by the an-
gles 6;, the angle between momentum and the x axis just
before the collision, and ¢, the polar angle of the position
of the collision point (Fig. 1). The angle between momen-
tum and the x axis just after the collision is 6 . As the
system in equilibrium is isotropic, the impulse 4 depends
only on the difference 6, — ¢,

Isoenergetic: A4;,=—2p,,=—2p cos(6;,—¢) , (18)

l—p,/p 1—cos(6; —¢)
140, /0 L " 1+cos(6,—g)

(19)

Isokinetic: A4;=pln

The change of momentum in an isokinetic hard-disk
collision is equal to the change of momentum in an isoen-
ergetic hard-disk collision, and both collisions occur in an
infinitely short time. However, the ratio of the collision
time intervals of isoenergetic to isokinetic collisions is al-
ways less than unity (see Fig. 2). Isokinetic collision
takes longer, even in the hard-disk limit, and the isokinet-
ic impulse (19) is therefore larger than the isoenergetic
impulse (18) and becomes singular for the totally radial
initial momentum.

The values of the thermostated collision impulse

A= :F dt

obtained by numerical simulations for the increasing con-
stant force, the stiff spring with increasing elasticity con-
stant, and the truncated Lennard-Jones potential with in-
creasing well depth all approach the value predicted by
(19) for hard disks.

In equilibrium, when all possible collisions (i.e., all pos-
sible combinations of angles 6, and ¢) are equally prob-
able, the ratio of the potential parts of pressure is equal to
the ratio of the shaded areas in Fig. 2,
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| isokinetic

| isoenergetic
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FIG. 2. Isoenergetic and isokinetic impulse A4 (6; —¢@) in the
equilibrium collision as a function of the angles 6; and ¢ before
the collision at » =o (shaded region). The isokinetic collision is
singular for 8;—@==m. The ratio of the impulses is the ratio
of the shaded areas.

o 1—cos(8; — @)
; d6,—@n—————
Ppoential L L ey ey
Pl enetattic Zfﬂq:zd((),-—qo)cos(ei—qa)
_ 1,1 _
=2 [1——+—5— " |=1.8319%, (20)
32 s

i.e., twice Catalan’s constant. This result is consistent
with findings of Kratky and Hoover [6] for the heat flow
model in the limit when A—O0.

II1. ISOENERGETIC CASE WITH SHEAR

Outside equilibrium, when y70, the equations of
motion with the isoenergetic constraint are given by (1)
and (3). The equations of motion for the squared com-
ponents of momentum during a hard-disk collision are
obtained by neglecting all the terms that do not contain F
and by taking into account that during a hard-disk col-
lision the change of momentum occurs at one point, the
point of collision (xq,y,) at r =0,

d , . myXxoyo Py

—pi=2 =2F |p,+—————— |, 21
acPr = 2pePr P, 20 pitp? 2D
d , . myxoyo P:

4 2 =070 Tt 22
dtpt zptpt 2F 20_ p,2+p,2 ’ ( )
d . myXoyo

—p*=2pp=2F |p, + — 23
dt PP Pr 20 23)

The condition that determines the final radial com-
ponent of momentum p,; is

Ar= fslzi'(t)dtZO :

With the presence of shear the radial component of the
velocity of the point particle is a sum of two terms, the
peculiar part 2p,/m directly proportional to the radial
component of peculiar momentum p, and the radial com-
ponent of streaming velocity at the point of collision
YXo¥o/0, where x, and y, are coordinates of the point of
collision. Therefore in this case the boundary condition
determining the final value of p, is
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»,
m

YXo0Yo

Ar= f:z

1

dt=0, (24)

different from (15) and the condition described in [6].
From Eq. (23) it then follows that in the isoenergetic case
the condition Ar =0 is equivalent to the requirement that
the magnitude of momentum p at the end of collision
equal the magnitude of momentum at the beginning of
collision, Ap =0.

From the form of Egs. (21), (22), and (23) it is possible
to show that for each polar angle of collision ¢ there ex-
ists an interval of initial angles of momentum 6; such that
the collision cannot be solved. Here we present the argu-
ments that apply to ¢ in the second or fourth quadrant.

From Eq. (23) it can be deduced that the minimum of
kinetic energy (i.e., p>=p2+p?) is at the turning point,
when Pr =Prtp ’

_ myXe¥o

20 (25)

Prp=

In the second and fourth quadrants the constant
(myxgyy)/(20) is negative. During a collision the point
particle moves towards the center of the scatterer, while
the radial momentum increases from the negative value
D to zero and then to the positive value p,,, at the turn-
ing point.

Equation (22) states that the square of the tangential
component decreases steadily from p2 during a collision
in the second or fourth quadrant because the rhs of (22) is
negative. When p, =0, the square of the tangential com-
ponent p? must therefore be less than the square of the
tangential component p? at the beginning of collision. A
direct consequence is that, when p, =0, the square of the
total momentum p? is less than p2.

However, p? has the minimum not when p2=0, but
when p; =p,2,p. Therefore pz———pé at the turning point
must be less than p? when p, =0,

2
myXxoyo
ptf) =pt2tp +prztp :pt%p_'_ T t%
and
myXxoyo
Pip <Pi— |75 (26)

Condition (26) cannot be fulfilled if the rhs of the in-
equality is negative. If (26) is written in terms of the an-
gles 6, and @, the solution of

|sin(6; — )| <ﬂp7’l|sin2¢| , 27)
where p; is the momentum at the beginning of the col-
lision, yields the interval of (6, —¢) for which the col-
lision cannot be solved. For every angle of collision
@7k /2, where k is an integer, such an interval has non-
vanishing length (see Fig. 3).

Condition (27) can be obtained for the collisions in the
first and third quadrants of ¢ following a similar type of
argument. This means that if the isoenergetic constraint
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(a) Y=05 (b)y=r (c)yE2
® ’ (DE‘ % @F HA
6 & &

FIG. 3. Distribution of angles 6; and ¢ at r =0 characteriz-
ing a hard-disk collision can be represented in the (6;,¢) plane.
The momentum angle 6; €[0,27] is plotted on the abscissa,
whereas the angle of the collision point ¢ €[0,27] is plotted on
the ordinate. The gray regions represent all possible pairs
(6;,9) (i.e., corresponding to 7 <0) for three values of reduced
shear rate. The black regions around the radial direction
represent the pairs (6;,¢), for which the inequality (27) holds.
An isoenergetic hard-disk collision cannot be solved at least in
these regions.

is used, a finite fraction of hard-disk collisions cannot be
solved.

IV. ISOKINETIC CASE WITH SHEAR

A. Collisions

When y#0, the equations of motion with the isokinet-
ic constraint are given by (1) and (2). In the hard-disk
limit the collision is solved using the same limiting pro-
cedure as was used in solving the equilibrium isokinetic
collision. The momentum is resolved into its radial and
tangential components, and the terms that do not contain
the infinite force F are discarded. Thus, obtained equa-
tions of motion are identical to Egs. (12), describing the
equilibrium isokinetic collision, and give the same time
dependence (14) of the radial and tangential components
of momentum. The condition that determines the final
radial component of momentum p,, is given by (24).
Therefore the final value of momentum is determined
from

e, | 2p, X
Ar=f2 Pr +__7/ o¥o dt
€ m g
€ X
=[ —zlftanh Frl Yo =0, 8
1

The dependence of the direction of momentum after the
collision on shear rate comes from this condition. The
value of the radial component of momentum after the
collision is determined as a zero of the equation

1—pl/p*

In |- _Pr’P_
1—pj/p*

N myxgyo (1+p,/p)1—p, /p)

20p (1—=p,;/p)1+p,; /D)

=0, (29

using numerical methods.
A geometric interpretation of the solution of (29) is
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presented in Fig. 4. At the turning point of a trajectory,
#=0 and p,=p,,,, as given by (25). Condition (28) then
means that on the graph of p,(Ft) the area below the line
Pr=Dup=—(myx0y,)/(20) must equal the area above
this line (i.e., the distance traveled towards the center of
the scatterer must equal the distance traveled away from
the center). If the collision occurs in the second or fourth
quadrant of the angle @ [Fig. 4(a)], where the streaming
velocity pushes the point particle further into the scatter-
er, p, at the turning point is positive and the direction of
the final momentum is closer to radial. When the col-
lision is in the first or third quadrant [Fig. 4(b)], the
streaming velocity pushes the point particle out of the
scatterer and p, at the turning point is negative, so that
the final momentum is ‘“less radial” than the initial
momentum.

If p,,, = —(myaxqy,)/(20) is larger than the magni-
tude of the momentum p [Fig. 4(a)], the p,(Ft) curve will
lie entirely below the line p, =p,,, and it will not be possi-
ble to solve the collision. An interval of such “forbid-
den” angles of collision ¢ appears in the second and
fourth quadrants when the reduced shear rate

(a)

o s B
W end of collision
Pr i
-p
Ft
(b)
-
p’( S " end of collision o]
0 N -
~
PrT] (y* sin2¢)/4
-p

Ft

FIG. 4. (a) Change of the radial component ¢ momentum p,
during a collision in the second or fourth quasrants of ¢, shown
in black in the inset. For these collisions the turning point
p,=—myxyyo/(20) is positive, and the condition of equality of
the shaded areas below and above the turning point implies that
the momentum after the collision will have a larger radial com-
ponent than before the collision (i.e., |p,s| > |p,|). (b) Change of
the radial component of momentum p, during a collision in the
first or third quadrants of ¢. Here the turning point
P,=—myxyyo/(20) is negative, and the condition that the
shaded areas must be equal means that the radial component of
momentum after the collision is smaller than before the col-

lision (|p,/| <lp.|).
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v*=myo /p exceeds 4. For a collision occurring in this
“forbidden” interval of ¢, the moving particle cannot
“bounce off” after the collision, but stays bound
indefinitely to the scatterer. These collisions have the
same origin as the artificial string phase observed in the
strongly sheared soft-disk systems [7,8] with a profile-
biased thermostat [8]. Therefore y*=4 can be con-
sidered as a limit of applicability of a linear profile ther-
mostat. This effect is discussed in more detail in Ref. [5].

B. Potential part of the pressure tensor

Once p,, has been evaluated from (29), the impulse
A(6;,9) can be found from

4(0,,)=Lin L P /PP /P) (30)

2 (1=p,/p)1+p,/p)
Let us compare the impulse for two collisions with the
same radial component of momentum at the symmetric
positions in the first quadrant (at a collision angle ¢) and
in the second quadrant (collision angle 7-¢).

Without shear the two impulses would be the same.
As the shear rate increases, the impulse in the second
(and the corresponding impulse in the fourth) quadrant
increases [Fig. 4(a)], while the impulse in the first (and
third) quadrant decreases [Fig. 4(b)]. In the former case
the streaming velocity pushes the point particle into the
scatterer even when the radial component of momentum
is zero, and in the latter case the point particle is pushed
away from the center while its radial component of
momentum is still pointing towards the center of the
scatterer. Therefore, even in the limit when the time of
collision tends to zero, the particle spends more time
within the scatterer if the collision is taking place in the
second and fourth quadrants than if it is happening in the
first or the third. The difference between the two im-
pulses increases with the shear rate.

The dependence of the impulse A4 (6;,¢) on the posi-
tions of collision and on the reduced shear rate
vY*=myo /p is shown in Fig. 5. The contribution of a
particular collision, characterized by angles 6; and ¢, to
the potential part of the pressure tensor, is determined by
the probability f?(6;,¢) for such a collision to occur,
and, in addition, by three competing effects (Fig. 5):

(i) the increase of the impulse 4 (6;,¢) with shear rate
in the second and fourth quadrants of @ and its decrease
with y* in the first and third quadrants of ¢;

(ii) the decrease of the impulse with the increase in the
distance of |6; — | from the (singular) maximum at +;

(iii) the value of cosg sing, cos’p, and sin’p at the col-
lision which specifies the elements P,,, P,,, and P,, of
the potential part of the pressure tensor.

The probability distribution f7(6;,p) gives the proba-
bility for the point particle to have the momentum angle
0; at the position characterized by the polar angle ¢ at
the circumference of the scatterer r =0 just before a col-
lision. This distribution depends on both reduced density
p*=po? and reduced shear rate y*. The probability dis-
tributions for two values of shear rate y*=1 and y*=3
and for two densities p* are shown in Fig. 6.
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singularities f;-¢=*m

FIG. 5. Competing effects determining the dependence of the
average collision impulse on shear rate. The square in the mid-
dle of the picture represents the (6;,¢) plane at the collision
(r=0). The square is divided into four intervals of ¢ corre-
sponding to the quadrants shown in black on the left-hand side
of the picture. In the second and fourth (shaded) quadrants the
collision impulse 4 (6;,p) (where 6, is the momentum angle at
r =0 before the collision) increases with y* with respect to the
equilibrium value, while in the first and third (unshaded) qua-
drants it decreases. The impulse always has a singular max-
imum on the dashed line 6, —@==xw. The average impulse
(A4(6;,p)) for an angular distribution of @ and ; before the
collision at » =¢ will be determined from the position of the
maximum of the probability distribution in the (6;,¢) plane:
whether it is in the shaded or in the unshaded region, and how
far it is from the dashed line.

In order to represent the distribution of angles just be-
fore a collision, the distribution function f°(6;,¢) can be
nonzero only for such pairs of angles (6;,¢) for which the
motion of the point particle is towards the center of the
scatterer, i.e., where 7 <0, so that

f(ei,¢)=—2n{1cos(9i—<p)+J’zisin2¢><o. 31)

These are the regions of the angles 6; and ¢ over which

we have to average the impulse 4 (6;,) to obtain the po-

tential part of the pressure tensor. From Eq. (31) and

Fig. 6 it can be seen that the shape of these regions de-

pends only on reduced shear rate ¥* and not on density
*

The probability density of a certain collision character-
ized by a pair (6;,¢) in these regions depends both on
density and shear rate:

(i) the increase in shear rate makes the angle 0 between
the collisions rotate faster towards O or = [last equation
of (4)], causing the most probable values of the angle 0, at
the end of a “free” trajectory to get close to O or 7 with
the increase in shear rate;

(ii) the decrease in density at constant shear rate in-
creases the average time between the collisions and allows
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FIG. 6. Qualitative determination of the dependence of the
potential part of elements of the pressure tensor from the angu-
lar probability distribution of ¢ and 6; before the collision at
r=o. The potential parts of P,,, P,,, and P, are given by the
average value of the products 4 (0;,@)cosg sing, 4 (6;,¢)cos’p,
and A (0,,p)sin’p, respectively. The values of cosgsing are
plotted on the left-hand side of the picture, and the @ intervals
where cosgsing <0 are framed in a bold frame. They coincide
with the @ intervals where the impulse A4 (6;,¢) increases with
the shear rate. The functions cos’p (dotted line) and sin’p (solid
line) are plotted on the right-hand side and the ¢ intervals
where sin’p > cos’p are shaded. The dashed line represents the
singular maxima of the impulse. The behavior of the potential
parts of P,,, P,,, and P,, can then be estimated from the posi-
tions of the maxima of the probability density of 8; and ¢ at the
collision.

the angle 0 between the collisions to rotate towards O or
7 for longer time, and therefore has a similar overall
effect on 0; as the increase in shear rate;

(iii) the increase in shear rate and the decrease in densi-
ty make the collisions in the second and fourth quadrants
of @ more probable then the collisions in the first and
third quadrants, and cause the most probable angle ¢ to
move towards 7 /2 or 37 /2.

The steady-state probability distribution f7(6;,¢) is
not a smooth function of 6; and ¢, but rather has a frac-
tal structure [5,9] because the system (1),(2) is dissipative
and the phase space trajectory has a sensitive dependence
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on initial conditions. The simulation results for the po-
tential part of the pressure tensor P,, and the normal
stress difference P,, —P,, are presented in Fig. 7. The
sign of the potential part of P,, is determined by the sign
of the average value of the product 4 (6;,¢)cosg sing at
the collision. When shear is present, the collisions in the
second and fourth quadrants of ¢, where the product is
negative, become more probable than the collisions in the
first and third quadrants, where it is positive (Fig. 6). For
these collisions the impulse contribution to
( A(0;,p)cos@sing) is also larger, because in the second
and fourth quadrants the impulse increases with the
shear rate, while in the first and third quadrants it de-
creases. Therefore the potential part of P,, becomes neg-
ative.

The potential part of |P,,| first increases with y* be-
cause there is an increased probability for the collisions
to occur in the second and fourth quadrants, where the
impulse 4 (6;,¢) increases with ¥* ( Figs. 6 and 7; both
densities at shear rate y*=1). When y* increases to
higher values, the trajectory of the point particle becomes
more horizontal and therefore the probability of the col-
lisions in the second and fourth quadrants closer to
@==xm/2 increases. The angle 0; gets closer to 7. The
potential part of |ny| then decreases for two reasons.
First, the average value of the impulse 4 (6;,¢) decreases
as such values of 6; and ¢ become more probable, be-
cause the majority of the collisions occur at intervals of
6;,—¢@ further away from the (singular) maximum.
Second, the average value of the product |cosg sing| de-
creases because (|cosg|) tends to zero when the angles
of @ close to £ /2 become favored (Figs. 6 and 7; both
densities at y*=3).

The diagonal elements of the potential part of the pres-
sure tensor P,, and P,, depend on { 4(6,,p)cos’p) and
( A(8;@)sin’p), respectively. Their dependence on shear
rate can also be accounted for by Fig. 6.

At first both diagonal elements increase with shear
rate, because the dominant effects is the increased im-
pulse in the second and fourth quadrants of the collision
angle @, where more collisions take place. Nevertheless,
for p*=0.4 more collisions occur closer to ¢==x7/2,
where sin’p > cos’p, while the angle 6, is sufficiently
spread out for all angles @ to include values on both sides
of the singular maximum in the impulse (Figs. 6 and 7 for
p*=0.4, y*=1). Therefore the potential part of P, is
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greater than the potential part of P,,. The behavior of
the normal stress difference is dominated by the increased
probability of collisions close to the top and the bottom
of the scatterer, with the larger value of sin’g.

For p*=0.1 (Fig. 6 for p*=0.1, y*=1), on the other
hand, P,, is greater than P,,. The angle 6, at the col-
lision has values much closer to 7 or O for the collisions
in the @ intervals with sin’p>cos’p. Such a combina-
tion of 6; and ¢ gives impulses far away from the singular
maximum in the impulse. For collisions with
cos’p>sin’p the impulse is much closer to the max-
imum. Therefore the increased probability of collision
angles @ with sin’p > cos’p is outweighed by their lower
contribution to the impulse.

For larger shear rates (y*=3 on Fig. 6) P, decreases
for two reasons: first, there are fewer collisions with
cos’p > sin’p; and second, most collisions have the angle
0; just before the collision close to O or , i.e., far from
the maximum. Therefore, as ¥ {7) becomes large (where
(1) is the average time between the collisions), the poten-
tial part of the normal stress difference becomes negative,
as opposed to the kinetic part of the normal stress
difference.

The results for the potential part of the normal stress
difference at different densities (Fig. 7) cannot be de-
scribed by only one parameter, which implies that the po-
tential part of the pressure tensor depends on density and
shear rate as two separate parameters. This is not
surprising, since the potential part is determined by the
angular distribution f?(6;,¢) at the collision and the im-
pulse 4 (6;,¢). Even assuming that the angular distribu-
tion depends on a single parameter y7', the value of the
impulse in the different quadrants of ¢ (Fig. 5), and the
shape of the regions 7 <0 over which the averaging is
done, depend only on shear rate and not on density.

V. SOFT DISKS

Until recently, only “soft” interactions between parti-
cles were used to solve the collisions. When the interac-
tion potential is sufficiently steep at » =0, the dependence
of the potential part of the pressure tensor on shear rate
should be qualitatively similar to this dependence for
hard disks.

Soft disks were most frequently simulated using the
Lennard-Jones potential truncated at some distance not
larger than the length of the periodic cell. We used the
Lennard-Jones potential truncated at r =o.

12 6
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for r <o,

o= 32)

0 forr>0o,

because such a soft-disk Lorentz gas can have the same
range of densities as the hard-disk gas. The parameter
describing the “softness” of disks with the isokinetic con-
straint is the “reduced temperature,”

T*= kBT:.LZ
€ me ’

while for the isoenergetic disks the equivalent parameter
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can be defined as E /t.

The increase in temperature is manifested as greater
“softness” of the scatterers. In all our simulations the re-
duced temperature was equal to unity.

A. Collisions

The intervals of 6; around the radial direction de-
scribed in Sec. III, where hard-disk collisions cannot be
solved, persist for soft disks with the isoenergetic con-
straint (3), but are reduced in size. Nevertheless, a finite
fraction of collisions still cannot be solved for soft disks
under shear with isoenergetic constraint.

Soft-disk collisions with isokinetic constraint (2), how-
ever, can be solved for all shear rates. The impenetrable
“hard core” of the soft disks appears more anisotropic at
higher shear rates y*, as shown in Fig. 8. The black re-
gions consist of dots representing the minimal distances
from the origin for a uniform set of angles (6;,¢) before
the collisions, i.e,. the turning points. The ‘“hard core” is
white. For y* >4, in a part of the region where the point
particle can move within the scatterer (marked by the
dotted line in the picture), there are no turning points.
This is the part of the scatterer where the radial com-
ponent of velocity is always negative and therefore the
distance from the center cannot be minimal. This region
is enclosed within the “forbidden’ (shaded) interval of ¢,
where a corresponding hard-disk collision could not be
solved. The shape of the area enclosed by the dotted lines
within the scatterer, where the distance cannot be
minimal, does not depend on the form of the repulsive
central force, but is determined only by the applied shear
rate y*.

¥2

FIG. 8. “Hard core” of soft disks. A uniform distribution of
angles (0;,¢) before the collision at » =0 (along the circumfer-
ence of the scatterer) is taken as a set of initial conditions for the
collision trajectories. The black regions consist of dots
representing the minimum distances from the origin (turning
points). The hard core of the disk becomes more anisotropic
with the increase in shear rate. For y*=6 (i.e., y* > 4) the “for-
bidden” (shaded) intervals of the angle @ appear, where the tra-
jectory can pass but cannot have a turning point.



B. Potential part of the pressure tensor

The collision of soft disks takes place not at a point but
over a finite path. The point particle moves through the
scatterer during a collision and the kinetic part of the
pressure tensor consists of the free-streaming part be-
tween the collisions and of the part during the collision.
At T*=1 the kinetic contribution of collisions is small
compared to the contribution of free trajectories between
the collisions, because the repulsive force is sufficiently
strong not to allow the point particle to spend too much
time within the scatterer. The motion between the col-
lisions obeys the same equations of motion for hard and
soft disks, and therefore the dependence of the kinetic
part of the pressure tensor on shear rate for soft disks
closely resembles the dependence for hard disks, as was
found in Refs. [3] and [4].

The dependence of the potential part of the pressure
tensor on shear rate for soft disks of reduced densities
p*=0.1 and p*=0.4 is shown in Figs. 9(a) and 9(b), and
9(c) and 9(d), respectively. It is determined by the second
term in the rhs of (5), i.e., the average value of F,rz. The
angular probability distribution at » =0 becomes more
disordered than for hard disks, with the less distinct
peaks of 6; for T*=1, but the maxima are still roughly in
the same positions in the 0;,¢ plane. Therefore the
behavior of the pressure tensor for soft disks is similar to
the behavior for hard disks, at least in the range of shear
rates ¥* <3: the normal stress difference is negative for
p*=0.4 and becomes negative for y*> 1.5 for p*=0.1.
However, the collision impulse for the finite force is less
than the impulse for infinitely hard disks (the hard-disk
limit of the impulse is approached from below), and this
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is the main reason why the elements of the potential part
of the pressure tensor have smaller absolute values for
soft disks than for hard disks.

VI. CONCLUSION

In this paper we investigated the consequences of using
isokinetic or isoenergetic constraints in the definition of a
hard-disk Lorentz gas system subjected to shear. In equi-
librium, the trajectories of the isokinetic and isoenergetic
particles were shown to be identical. However, the im-
pulse received by the isokinetic particle is larger than the
impulse received by the isoenergetic particle. Therefore
the potential parts of the thermostated and unthermostat-
ed equilibrium hydrostatic pressures are different, their
ratio being equal to 1.83194. The difference between
them comes from the fact that the isokinetic equations
(10) are not Newtonian. While for the isoenergetic equa-
tions (9) the change of the momentum during the col-
lision is equal to the impulse of the force F, this equality
is no longer valid for the isokinetic case. The definition
of the potential part of the pressure tensor (6) involves
the impulse A4 (0; —¢) rather than the total change of
momentum Ap. The potential part of the pressure tensor
therefore gives the contribution of the conservative force
of interaction to momentum transfer during a collision.
This definition is also consistent with the definition of the
kinetic part of the pressure tensor using the peculiar mo-
menta instead of the sum of peculiar and streaming veloc-
ities. The alternative definition of the potential part, us-
ing Ap instead of A, would yield an asymmetric pressure
tensor,
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potential. potential
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for thermostated disks outside equilibrium.

When shear is present, a finite fraction of isoenergetic
hard and soft-disk collisions cannot be solved. Therefore
the isoenergetic constraint (3) is not appropriate for mod-
eling the Lorentz gas subjected to shear.

The solution of the sheared isokinetic hard-disk col-
lision implies that the magnitude of the radial component
of momentum is different before and after the collision,
the point particle having a larger radial component after
the collision in the quadrants where the radial component
of streaming velocity is negative, and a smaller radial
component where the radial component of streaming ve-
locity is positive. The impulse in the former case is larger
than in equilibrium, while in the latter it is smaller than
in equilibrium. The dependence of the impulse on the po-
lar angle of the momentum and the coordinates of the
collision point can qualitatively explain the dependence
of the potential part of the pressure tensor on shear rate.
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It can also show that pressure must depend on density
and shear rate as separate parameters, implying that the
nonequilibrium steady state is characterized by two in-
dependent parameters. Similar dependence of the poten-
tial part of the pressure tensor on shear rate for soft disks
using the Lennard-Jones potential truncated at r=o
gives one confidence in the correctness of the collision
law for hard disks.

For y* >4 a fraction of isokinetic hard-disk collisions
occurring in the finite interval of the collision angle ¢
cannot be solved. These ‘“forbidden” collisions are the
consequence of using a linear profile thermostat.

The actual probability distribution of the polar angle ¢
of the collision depends also on density. For very low
densities, p* <<0.1, the collisions are confined to points
very close to the top and bottom of the scatterer because
of the nearly horizontal trajectories in the vicinity of the
scatterer. Therefore for such low densities, the “forbid-
den” collisions may occur for the first time at the shear
rates higher than y* =4, and the limit of applicability of
the linear profile thermostat may be density dependent.

[1] A. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 (1975).

[2] D. J. Evans and G. P. Morriss, Comp. Phys. Rep. 1, 297
(1984).

[3]A. J. C. Ladd and W. G. Hoover, J. Stat. Phys. 38, 973
(1985).

[4] G. P. Morriss, Phys. Lett. 113A, 269 (1985).

[5]J. Petravic, D. J. Isbister, and G. P. Morriss, J. Stat. Phys.
76, 1045 (1994); J. Petravic, thesis, University of New
South Wales, 1994 (unpublished).

[6] K. W. Kratky and W. G. Hoover, J. Stat. Phys. 48, 873
(1987).

[7]J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984).

[8] D. J. Evans and G. P. Morriss, Phys. Rev. Lett. 56, 2172
(1986).

[9] G. P. Morriss, Phys. Rev. A 39, 4811 (1989).

[10] W. G. Hoover and B. Moran, Phys. Rev. A 40, 5319
(1989); W. G. Hoover, Physica A 194, 450 (1993); W. G.
Hoover, C. G. Hoover, W. J. Evans, B. Moran, J. A.
Levantin, and E. A. Craig, in Microscopic Simulations of
Complex Flows, NATO Advanced Study Institute Series,
edited by M. Mareschal (Plenum, New York, 1990).



